Course	Credit	Advanced Deven Creter Bretestion	Contact	Total
Code	Hours	Advanced Power System Protection	Hrs/Week	Contact Hrs
EPE-812	(Th-Pr)	(Elective)	(Th-Pr)	(Th-Pr)
	3-0		3-0	45-0

Course Outline:

Topics include analysis and characterization of different types of Power System faults both symmetrical and asymmetrical ,Fault Current Measurement and Control, Protective Devices design considerations, Protective Devices characteristics, Relay Logics, Impedance and admittance at the relays, introduction to advance protection concepts ,Fault protection of radial distribution feeders, differential protection, transmission lines protection, analysis of distance protection , Apparatus protection , Transformer generator and motor protection, Protection against abnormal system frequency, Protective schemes for stability enhancement, Lightning Protection, SF6 Circuit Breakers, Fuses and Switch Gears

Eligibility Criteria:

B.E (Electrical Engineering)

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1	Power System Protection	P. M. Anderson	PM	Text
2	Fundamentals of Power	Y.G. Paithankar	YP	Text
	System Protection			
3	Protective Relaying:	J. Lewis Blackburn	JL	Reference
	Principles and			
	Applications			
4	Modern Solutions for	Hector J.Altuve	HJ	Reference
	protection, control and			
	monitoring of power			
	systems			
5	Modern Power System	J. B. Ekanayake	JB	Reference
	Protection			
6	Electrical Power systems	C L Wadhwa	CW	Reference

Course Objectives:

The primary objectives of this course are to familiarize students with different protective devices used for the protection of power system equipment and enable them to develop and implement different relay logics for secure and reliable operation of power system

Learning outcome:

At the end of the course, students will ::

- Have adequate knowledge in the field of power system protection, circuit breakers, and instrument transformers
- Be able to understand the programming and operation of digital relays
- Be able to design the relevant protection systems for the main elements of a power system.
- Demonstrate an ability to participate in professional multidisciplinary teams

Topics Covered:

S	Topics	Text	Allocated
No		Book	Periods
1.	Characterization of different types of Power System faults both	PM &	5
	symmetrical and asymmetrical, Fault Current Measurement	ΥP	
	and Control		
2.	Determination of system voltages produced by traveling	PM &	4
	wave surges. Insulation coordination, Causes of over	ΥP	
	voltages. Propagation of surges, Protection against lighting.		
	Surge arrestors and directors. Interference with		
	Communication circuits		
3.	.Protective Devices design considerations, Protective Devices	PM &	5
	characteristics, Relay Logics, Impedance and admittance at	ΥP	
	the relays, introduction to advance protection concepts ,Fault		
	protection of radial distribution feeders, differential protection,		
	transmission lines protection		

4	Over current, impedance, instantaneous, Pilot and time	PM &	6
	relays. Electromechanical, static and microprocessor based	YP	
	relays. Instrument transformers. Protection schemes; over		
	current, earth fault, differential and distance relaying		
5	Review of short circuit calculations. Working, types, and	PM &	8
	application of Reactors and Fuses.	YP	
6	Initiation of arc, recovery voltage and restricting voltage in	PM &	8
	circuit breakers. Construction, working and types of circuit	YP	
	breakers. Trip circuit. Auto reclosing. Isolators.		
8	Transformer generator and motor protection, Protection against	PM &	9
	abnormal system frequency	ΥP	